Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Sci Rep ; 12(1): 2803, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1735270

ABSTRACT

The COVID-19 pandemic has demonstrated the real need for mechanisms to control the spread of airborne respiratory pathogens. Thus, preventing the spread of disease from pathogens has come to the forefront of the public consciousness. This has brought an increasing demand for novel technologies to prioritise clean air. In this study we report on the efficacy of novel biocide treated filters and their antimicrobial activity against bacteria, fungi and viruses. The antimicrobial filters reported here are shown to kill pathogens, such as Candida albicans, Escherichia coli and MRSA in under 15 min and to destroy SARS-CoV-2 viral particles in under 30 s following contact with the filter. Through air flow rate testing, light microscopy and SEM, the filters are shown to maintain their structure and filtration function. Further to this, the filters are shown to be extremely durable and to maintain antimicrobial activity throughout the operational lifetime of the product. Lastly, the filters have been tested in field trials onboard the UK rail network, showing excellent efficacy in reducing the burden of microbial species colonising the air conditioning system.


Subject(s)
Air Filters/microbiology , Anti-Infective Agents/chemistry , Antiviral Agents/chemistry , Air Filters/virology , Anti-Infective Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19/virology , Candida albicans/drug effects , Chlorhexidine/analogs & derivatives , Chlorhexidine/chemistry , Chlorhexidine/pharmacology , Escherichia coli/drug effects , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , SARS-CoV-2/drug effects , Time Factors
2.
Lancet Microbe ; 1(1): e11, 2020 05.
Article in English | MEDLINE | ID: covidwho-1087360
3.
Elife ; 92020 12 17.
Article in English | MEDLINE | ID: covidwho-1011747

ABSTRACT

Here, we describe the case of a COVID-19 patient who developed recurring ventilator-associated pneumonia caused by Pseudomonas aeruginosa that acquired increasing levels of antimicrobial resistance (AMR) in response to treatment. Metagenomic analysis revealed the AMR genotype, while immunological analysis revealed massive and escalating levels of T-cell activation. These were both SARS-CoV-2 and P. aeruginosa specific, and bystander activated, which may have contributed to this patient's persistent symptoms and radiological changes.


Subject(s)
Anti-Bacterial Agents/therapeutic use , COVID-19/complications , Lymphocyte Activation , Pneumonia, Ventilator-Associated/drug therapy , Pseudomonas Infections/drug therapy , SARS-CoV-2 , T-Lymphocytes/immunology , Anti-Bacterial Agents/pharmacology , COVID-19/immunology , COVID-19/therapy , Drug Resistance, Multiple, Bacterial , Humans , Lung/microbiology , Male , Meropenem/pharmacology , Meropenem/therapeutic use , Metagenomics , Middle Aged , Piperacillin, Tazobactam Drug Combination/pharmacology , Piperacillin, Tazobactam Drug Combination/therapeutic use , Pneumonia, Ventilator-Associated/diagnostic imaging , Pneumonia, Ventilator-Associated/etiology , Pseudomonas Infections/diagnostic imaging , Pseudomonas Infections/etiology , Pseudomonas aeruginosa/isolation & purification , Recurrence , Respiration, Artificial
SELECTION OF CITATIONS
SEARCH DETAIL